Александр сергеев - новый президент ран. Комментарий

16.01.2024
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Корреспонденты «Чердака» побеседовали с директором нижегородского Института прикладной физики РАН академиком Александром Сергеевым , выдвинутым кандидатом в президенты РАН, о том, что он любит, что считает необходимым и на что надеется.


- Александр Михайлович, почему вы решили принять участие в предвыборной гонке и кто вас поддержал?

Если сказать честно, до середины апреля этого года у меня не было мысли баллотироваться на пост президента Академии наук, но эти события, которые произошли в марте , заставили меня взглянуть более озабоченно на то, что происходит.

Для меня очень дорого доверие моих коллег-физиков. Я считаю, что отделение физических наук РАН во многом основополагающее для Академии - и по науке, и по взаимоотношениям с промышленностью и оборонкой, и по демократическим принципам существования. Для меня очень дорого то, что физики оказали мне доверие. Благодаря их поддержке я принял такое решение.

- В чем заключается ваша предвыборная программа?

Как таковой программы нет - ее должна будет разрабатывать команда. У меня есть свое видение, концепция программы. Я считаю, что в существующем законодательном поле есть огромное множество плотностей для того, чтобы Академия наук смогла позиционировать себя как ведущая сила, консолидирующая усилия ученых страны в области фундаментальных исследований. И в то же время - чтобы Академия оставалась организацией, функционирующей на тех демократических принципах, которые сейчас существуют. У нас в последнее время, особенно в связи с тем, что не состоялись выборы в марте месяце, существует определенное недоверие между РАН и государственными структурами, которое необходимо преодолеть. Я выступаю за то, что мы должны вести дела таким образом, чтобы у нас в стране власть и наука гордились друг другом. Это некий основной тезис, на котором строится программа.

- Насколько нам известно, вы всю жизнь проработали в Институте прикладной физики РАН.

Да. В моей трудовой книжке значится одно место работы, а именно ИПФ. Так получилось, и кстати, я думаю, что это один из существенных моментов, который располагает сейчас ко мне многих академических людей, особенно в период предвыборной кампании: я прошел все ступеньки. Я был стажером-исследователем, младшим научным сотрудником, старшим научным сотрудником, заведующим лабораторией, заведующим отделом, директором отделения, заместителем директора по научной работе, директором. Поэтому я хорошо знаю, как организована работа в академическом институте на каждой такой «ступеньке».

Институт прикладной физики АН СССР в Горьком, участок обработки кристаллов для постройки лазеров. Фото: Владимир Войтенко / фотохроника ТАСС

Я закончил университет в 1977 году. Именно в этом году был организован Институт прикладной физики Академии наук СССР. В моей судьбе вышло так, что я попал в нужное время в нужное место. Ничего более удачного придумать себе невозможно. Организовывается новый институт - академический, с очень серьезными задачами, которые перед ним стоят. Руководит институтом выдающийся ученый - Андрей Викторович Гапонов-Грехов. Очень удачная ситуация, и действительно, я попал в сильную, работающую команду. Я мог попасть и в другой отдел, но я попал в отдел физики плазмы. Так получилось. Этот отдел возглавлял Михаил Адольфович Миллер , совершенно уникальный человек, ученый энциклопедического и острого ума. Я попал в лабораторию, которую возглавлял Александр Григорьевич Литвак , молодой и энергичный ученый; он потом стал вторым директором ИПФ АН. Я унаследовал ИПФ АН у него.

И по плазме была ваша кандидатская. Но почему ее тема так сильно отличается от докторской диссертации, «оптической»? Или на самом деле они следуют одна из другой?

Я отвечу: и та и другая диссертация имеют под собой одну и ту же идеологию - так скажем, физическую. Это нелинейные волны в разных средах. Вообще, я являюсь представителем - и горжусь этим - Нижегородской школы радиофизиков. В радиофизику входит и оптика, и акустика, электромагнитные волны, волны в твердом теле, волны в океане, волны в атмосфере, гравитационные волны. Все люди, работающие с разными типами волн, понимают друг друга на этом «волновом языке». Вот эта общая «волновая» идеология, в частности, объясняет, почему люди пишут кандидатскую диссертацию про плазму или какие-то электромагнитные волны в СВЧ и плазме, а докторскую диссертацию пишут по оптике или применительно к лазерной физике. Есть очень много общего и понимаемого.

Почему я несколько сменил направление исследований? Потому что ситуация стала сильно меняться. Появилось очень интересное направление - «фемтосекундная оптика». Лазеры были изобретены в 1960 году, как вы знаете. Это особый инструмент в плане взаимоотношения с нелинейными волнами, потому что лазер - это мощное излучение, которое может быть сфокусировано. Там очень высокие интенсивности. Это как раз основные условия, когда развиваются так называемые «нелинейные процессы», то есть когда следствие не прямо пропорционально причине. Вы увеличиваете воздействие в пять раз, а результат может быть в 50 раз меньше или в 1000 раз больше. Нелинейность прежде всего проявляется в том, когда у вас есть такое мощное излучение.

Фемтосекундная оптика - это оптика сверхкоротких лазерных импульсов. «Фемто» - это 10 в минус 15 степени. В середине 1980-х годов появились интересные результаты по получению очень коротких лазерных импульсов длительностью от нескольких десятков фемтосекунд. Стало ясно, что открывается совсем новая страница во многих науках. Прежде всего, короткие импульсы позволяют исследовать неизученные процессы в веществе, материи на новом временном срезе, например процессы в молекулах. А еще появляется возможность управлять процессами с очень высокой скоростью, в том числе в информационных системах.

Александр Сергеев в ИПФ РАН. Фото: scientificrussia.ru

Так что такое интенсивность, вы же понимаете? Это энергия, деленная на время, в течение которого эта энергия сосредоточена, деленная на площадь пятна, в которое вы сфокусировали излучение. Пятно уже особо не уменьшить, там дошли почти до предела: есть некий предельный дифракционный масштаб, как говорят, порядка длины волны излучения. Либо вы должны увеличивать энергию в лазерном импульсе - это экстенсивный путь: увеличивать размер самой установки, увеличивать число конденсаторов, в которые вы закачиваете эту энергию, а потом переводите в энергию лазерного излучения. А самый интеллектуальный и изящный путь - уменьшать знаменатель. И здесь, когда появилась возможность получать короткие фемтосекундные импульсы, стало понятно, что это путь к достижению полей огромной интенсивности при сравнительно небольших энергиях.

Но если вы умеете сжимать эти импульсы до очень маленьких интервалов, то получите гигантские интенсивности. Это был абсолютный драйв! Все вдруг поняли: мы вообще гигантские интенсивности и мощности можем получать в небольших помещениях, вот вроде кафе, где мы с вами сидим, а не на гигантских установках. И к началу XXI века был сделан такой петаваттный лазер для получения сверхсильных полей. Это уровень мощности 1 петаватт. «Пета» - противоположность «фемто», 10 в 15 степени. Первый лазер такой мощности в стране и третий или четвертый в мире был создан в нашем институте в 2006 году.

Но если вы умеете сжимать эти импульсы до очень маленьких интервалов, то получите гигантские интенсивности. Это был абсолютный драйв!

Вы работали и над проектом создания самого мощного лазера в мире. Этот проект же был включен правительством в число шести проектов класса megascience для реализации в 2013-2020 годах ?

- XCELS - это проект двенадцатиканального лазера, в каждом из которых будет 15 или чуть больше петаватт, в сумме до 200 петаватт, так называемый «субэкзаваттный» уровень мощности. И плюс еще когерентное сложение каналов. Мы хотим фемтосекундные импульсы из 12 каналов когерентно сложить в некоторой точке пространства и получить там излучение с такой интенсивностью и такими полями, которое разрушит вакуум. Впервые появится возможность изучать его пространственно-временную структуру.

Пожалуй, это та серьезнейшая загадка, исследование которой движет многими людьми в физике высоких энергий и физике сильных полей. Что такое физический вакуум, не знает сейчас никто. Это пустота? Не пустота? А может быть, просто у нас нет пока достаточных энергий для того, чтобы исследовать его свойства? По аналогии: мы не знали устройства атома до тех пор, пока его не разрушили. Это как ребенок, который разбирает свои игрушки, чтобы понять, как они устроены. Когда у нас появилась возможность разрушить атомы, мы увидели, что там есть электрон и положительно заряженная частица. Это был прогресс в понимании устройства материи. А может быть, в вакууме у нас просто не хватает интенсивности полей, которыми мы воздействуем для того, чтобы «копнуть»? Он развалится на что-нибудь такое, что мы сможем увидеть, - например, сверхплотную электрон-позитронную плазму - как тогда, когда мы узнали строение атома или ядра. В эти очень короткие временные интервалы, по существу мгновения, мы будем создавать и познавать совершенно новый мир. Вот это будет здорово, сильнейшая мотивация для ученых!

- У такого лазера до сих пор нет аналогов?

Мы говорим, что если бы такая установка была построена, условно говоря, в 2020-м, то она в течение десяти лет своего существования не знала бы себе равных в мире. Потом - да, можно было бы построить еще более мощную. XCELS - это проект исследовательской инфраструктуры, базирующейся на субэкзаваттном лазере. Подобно тому как синхротрон обкладывают рабочими станциями и используют его излучение для тех или этих нужд, это тоже должна быть исследовательская инфраструктура. Это уникальное излучение, с такими параметрами, что может использоваться для одного и другого, пятого и десятого. А вокруг этого лазера должно быть много лабораторий. Лазерные поля, которые можно уже сегодня получать с помощью сверхмощных лазеров, на четыре-пять порядков больше, чем предельные поля, которые могут быть использованы в традиционных ускорителях. Трассы ускорения частиц могут быть уменьшены в десятки тысяч раз. Вместо трассы ускорения в несколько километров вы можете получать эквивалентную трассу ускорения в один метр. Это грандиозный качественный выигрыш. Если у вас есть такая компактная система, то вы можете заниматься физикой высоких энергий вообще в любом месте.

- Вы сказали, что XCELS будет реализован, допустим, в 2020 году. А будет ли?

Вы знаете, я без жалоб на пространство и время могу сказать: мы живем в России и хотим здесь жить, иначе бы уехали - выбор-то сейчас есть. Но у нас с наукой сейчас есть проблемы: и этот проект затормозился, и я рискнул бы даже предположить, что почти никакие крупные научные проекты в стране не начинаются.

- Из-за нехватки финансирования?

Причина не только в том, что денег на науку мало и необходимо их кратное увеличение. Причины во многом организационного плана. Не оправдывая Академию наук, я еще раз могу подтвердить - это мнение и мое, и подавляющего большинства моих коллег: те преобразования, которые были проведены в 2013 году, были вредными для нашей фундаментальной науки. Как надо было делать, это вопрос другой.

- То есть вы не поддерживаете реформу РАН в том виде, как она была проведена?

Большинство нас, ученых, констатирует, что за эти четыре года продолжалась деградация российской фундаментальной науки, и даже ускоренно. Деградация - противное слово, но это факт. И если бы это было не так, были бы видны какие-то более-менее серьезные результаты. Есть очень простой, житейский показатель успеха. Если есть успех, то набегает много народа, который говорит: «Это я придумал! Это я! Смотрите, как хорошо получилось!» Нам в 2013 году устроили шоковую терапию, но никто на себя не взял ответственность за нее по прошествии уже полных четырех лет. Потому что неуспех. Когда неуспех, все друг другом недовольны. Администрация президента недовольна РАН, РАН недовольна ФАНО , ФАНО недовольно Минобрнауки, Минобрнауки кивает на еще кого-то.

Вы давно заходили в здание РАН? А вы зайдите, посмотрите. Там пусто. А должен быть дым коромыслом!

- Кажется, бесконечно искать виноватых контрпродуктивно.

Вот именно! А у меня есть такое опасение: в условиях столь явного неуспеха в состоянии науки есть люди, которые будут продолжать во многом винить именно Академию наук. Смотрите, что произошло: в декабре прошлого года приняли новую стратегию научно-технологического развития страны. А почему никто не вспомнил насчет предыдущей стратегии? Ведь в 2006 году была принята стратегия научно-инновационного развития страны. Отличная стратегия, к слову. В 2006 году планировалось, что к 2015 году резко увеличится финансирование науки. Тогда, скажем, оно было на уровне 1,2 процента ВВП. А к 2015 году оно должно было стать 2,5% ВВП, то есть на уровне стран с передовой наукой. Наука должна была стать основной производительной силой инновационной экономики, это был настоящий стратегический ориентир и цель. От 60 до 70% денег, которые идут в науку, к 2015 году должны были пойти из промышленности, из инновационного сектора. Этого не случилось. Вместо 2,5% мы имеем сейчас тот же показатель где-то на уровне 1,2%. 15% нашего экспорта к 2015 году должны были стать инновационными. А что мы с вами имеем? Может быть, мы новую стратегию сейчас приняли, да и двинемся вперед? А может, через год забудем и о ней тоже. Без анализа того, почему предыдущая не сработала, где и что там пошло не туда, можно (и самое легкое) говорить о том, что во всем виноваты сами ученые, и прежде всего РАН.

- Что же тогда сейчас делать РАН?

Думаю, что никто точно не знает, что сейчас правильно делать для подъема наук. Но пока у нас не будет консенсуса, точно не получится ничего. Надо, чтобы люди договорились о едином понимании того, что сейчас представляет собой наука в стране, до чего мы дошли. И договориться о траектории выхода из этой ситуации. Думаю, что такая траектория есть, но выход по ней будет очень непростым.

- А как сейчас обстоят дела внутри Академии?

Мы до сих пор не отошли от шоковой терапии (реформы 2013 года - прим. «Чердака»). В том смысле, что зачастую предложения со стороны, в том числе вполне здравые, мы воспринимаем сразу в штыки. И бывает, что мы иногда даже не замечаем протянутую нам руку сотрудничества. Такое есть. Я и в себе чувствую эту обиду от шоковой терапии. Обиду, прежде всего, от неуважительного отношения ко всему академическому сообществу, которое в явной степени было выражено. И это сильно мешает работать, в том числе организовывать работу Академии наук в существующем правовом поле. А в нем есть много, что поделать. Вы давно заходили в здание Президиума РАН? Там сейчас тихо. А когда-то был «дым коромыслом» и должен быть. Пока этого не будет, ничего и не случится. Можно сказать, что РАН перестала делить деньги и все затихло. Отчасти так, но не только. Необходимо, чтобы в руководстве Академии наук появилась большая команда людей, для которых основной и ежедневной работой должна быть Академия наук. В Академии наук много научных советов, но очень немногие из них работают активно. А это основные ячейки, в которых должны обсуждаться идеи, формулироваться новые направления, на базе которых формулируются потом предложения по научно-технической политике страны. Советы должны работать не раз в год, когда они смотрят на результаты, а регулярно. Наконец, все рядовые члены академии должны принять, что академия - не только общество избранных по заслугам, но и работа, за которую нам государство исправно платит стипендии.

- Что вы лично надеетесь предпринять в РАН, если будете избраны?

Я перечислю кратко несколько пунктов, по каждому из которых готовится проект программы. Первый пункт - достижение консенсуса между академией и органами власти относительно понимания причин теперешнего состояния отечественной науки, путей выхода из кризиса и роли в этом академии и фундаментальной науки. Есть принятая в декабре стратегия, и ее надо выполнять, но роль РАН в стратегии не слишком просматривается. Второй - получение Академией наук реальных инструментов формирования и реализации государственной научно-технической политики. Я не призываю к немедленному возврату институтов под контроль академии, но искренне уверен, что наукой должны управлять ученые, а действующее «правило двух ключей» во взаимоотношениях РАН и ФАНО - не инструмент развития, а скорее инструмент защиты друг от друга. Третий - активизация текущей работы академии, в том числе по перечисленным выше позициям. Чтобы был «дым коромыслом», чтобы в академию народ ходил, чтобы там был штаб. Четвертый - академия должна принять на себя ответственность за инициацию и раскрутку крупных научных проектов, которых в постсоветское время у нас катастрофически мало. Пятый - баланс фундаментальных и прикладных исследований и роль академии в его поддержании. Шестой - роль академии в обеспечении безопасности страны. В советское время она была принципиально важной, и это нужно возродить, пока еще есть для этого кадровый и интеллектуальный ресурс. Седьмой - необходимо изменить принятую еще с нулевых годов тактику позиционирования РАН в обществе как осажденной крепости. Противники всегда были и есть. Академия должна развернуться лицом к обществу и активно выстраивать с ним понятные отношения. Не отвечать, зачастую вяло, на удары и нападки, а вести собственную политику на этом информационном поле. Пиарить науку и наши достижения, быть открытой для СМИ, общаться со школьниками и родителями.

Ну и, наконец, на мой взгляд, самые большие потери, которые мы понесли за постсоветское время, - это не что промышленность развалилась или что сотни миллиардов уплыли куда-то не туда. Самой большой потерей для нас я считаю то, что резко понизился интеллектуальный уровень в стране. У меня есть представление о суммарном интеллекте нации. Он сильно сжался! Это случилось по разным причинам: «мозги» уехали, прекрасные инженеры и ученые в «челноки» ушли, школа и университет стали плохо готовить детей и в целом интеллект обесценился и перестал быть общественно значимым. Попросту говоря, умным быть уже не столь важно, и это трансформация запроса на интеллект уже приводит на наших глазах к катастрофическим последствиям. И пока мы не встанем на траекторию, чтобы этот абстрактный «суммарный интеллект нации» стал расти, мы так и останемся придатком мощных наукоориентированных стран. Я считаю, может быть, это слишком высокопарные слова, что Академия наук должна стать очень важной идеологической, ключевой структурой в стране, которая должна отвечать за подъем суммарного интеллекта нации. Это, по большому счету, стратегическая задача или миссия. Надо к этому изо всех сил стремиться.

Александр Сергеев родился 2 августа 1955 года в селе Бутурлино, Нижегородская область. В 1977 году окончил радиофизический факультет Национального исследовательского Нижегородского государственного университета имени Николая Лобачевского по специальности «радиофизика».

В 1982 году в Институте Прикладной Физики Российской академии наук защитил диссертацию кандидата физико-математических наук по теме «Самовоздействие и трансформация интенсивных электромагнитных волн в магнитоактивной плазме». Позднее, там же защитил диссертацию доктора физико-математических наук и стал членом- корреспондентом Российской академии наук.

После окончания университета Сергеева приняли стажером-исследователем в Институт Прикладной Физики Российской академии наук в городе Нижний Новгород. С 1979 года на протяжении семи лет работал младшим научным сотрудником. В 1985 году стал старшим научным сотрудником. С 1991 по 1994 год Александр Михайлович занимал должность заведующего лабораторией. В 1994 году назначен заведующего отделом.

С 2001 по 2015 год Сергеев занимал пост заместителя директора ИПФ РАН. Параллельно, возглавляя отделение института. С 2016 года является академиком РАН. Член Отделения физических наук по физике и астрономии Академии наук, член Совета РАН по космосу.

В это же время являлся директором Института прикладной физики РАН. Одновременно занимая должности заведующего отделом сверхбыстрых процессов и заведующего сектором моделирования сверхбыстрых оптических процессов Отделения нелинейной динамики и оптики ИПФ. По совместительству: профессор кафедры общей физики радиофизического факультета Нижегородского государственного университета.

Александр Сергеев возглавлял группу российских ученых в проекте по детектированию гравитационных волн LIGO в Соединенных Штатах Америки. В 2016 году участникам проекта присуждена престижная премия Грубера по космологии, а также Премия по фундаментальной физике. Член научно-координационного совета Федерального агентства научных организаций и совета фонда фундаментального исследований. Член редакционной коллегии журналов «Успехи физических наук» и «Известия ВУЗов - Радиофизика».

В июле 2017 года Сергеев зарегистрирован кандидатом на пост президента РАН. Выдвинут бюро Отделения физических наук, бюро Отделения энергетики, машиностроения, механики и процессов управления, бюро Отделения биологических наук, президиумом Уральского отделения, а также 240 членами РАН, согласно официальному сайту академии. Кандидатура Сергеева согласована правительством Российской Федерации 31 августа 2017 года.

Общим собранием членов Российской Академии Наук 26 сентября 2017 Сергеев Александр Михайлович избран президентом Российской академии наук.

Указом Президента Российской Федерации Владимира Путина от 27 сентября 2017 года академик Сергеев утвержден двадцать вторым президентом федерального государственного бюджетного учреждения «Российская академия наук» сроком на пять лет.

Под руководством Сергеева, в ИПФ РАН создан самый мощный в России петаваттный лазерный комплекс, разработаны новые способы применения фемтосекундного излучения для обработки материалов и медицины. Является ученым в области лазерной физики, фемтосекундной оптики: оптика сверхкоротких лазерных импульсов, теории нелинейных волновых явлений; исследует взаимодействие света с биологической тканью.

На торжественном заседании совета ученых МГУ, посвященном 264-летней годовщине со дня основания университета 25 января 2019 года Президент Российской академии наук Александр Сергеев избран почетным доктором Московского государственного университета

Александр Сергеев 14 марта 2019 года единогласным решением принят в состав Попечительского совета московского Политехнического музея.

Президент Российской Федерации Владимир Путин 12 ноября 2019 года провел встречу с главой Российской академии наук Александром Сергеевым. В ходе встречи профессор информировал о подготовке к выборам в академию. Он отметил, что были расширены специальности, это позволяет претендовать на места в Академии большему числу ученых. Проведением оценки профессиональных качеств соискателей занимались экспертные и две этические комиссии. Кроме того, для обеспечения прозрачности выборов в этом году на интернет-портале были опубликованы подробные данные обо всех соискателях.

Награды и Признание Александра Сергеева

Государственная премия РФ в области науки и техники (1999) за работы по оптической томографии биотканей.

Орден Почета (2006) за достижения в области создания компонентов и устройств для мощных лазерных комплексов.

Премия Правительства РФ в области науки и техники (2012) за работы по созданию петаваттного лазерного комплекса.

Премия Грубера по космологии (в составе коллаборации LIGO) (2016).

Офицер ордена Академических пальм, Франция (2018).

Лауреат международной медали «За вклад в развитие нанонауки и нанотехнологий» присуждаемой ЮНЕСКО (2018).

Зачем нам лжёт президент РАН Сергеев?

«Мудрый ценит знания, а не золото. Знание – это уже и золото, и мощь, и магия, и власть… и многое другое…»

В конце сентября 2017 года на общем собрании Российской Академии Наук (РАН ) был, наконец, избран новый начальник – новый президент Александр Сергеев, директор Института Прикладной Физики (ИПФ ) РАН. Однако, надежда на то, что новый президент РАН окажется честным, здравомыслящим и добросовестным учёным, пока не оправдывается. 17 октября 2017 года Александр Сергеев пообщался с анонимным корреспондентом ТАСС , в результате чего на сайте агентства появилась небольшая заметка под названием «Глава РАН: фиксация гравитационных волн от слияния нейтронных звёзд – пример новой науки» .

В этой статье я кратко проанализирую содержимое этой заметки, а основное внимание уделю принципиальным заблуждениям современной науки, с которыми академики категорически не желают расставаться, чтобы мы не догадались о том, что они уже давно не учёные и настоящей наукой давно не занимаются.

Интересно и то, что новоиспечённому главе РАН тоже оказалось не чуждо желание покрасоваться и попускать пыль в глаза обывателям, используя без перевода непонятные словеса на иностранном языке, типа multimessenger astronomy . Возможно и потому, что, переведи он это словосочетание на русский язык, и оно не только потеряет всю свою такую притягательную наукообразность, но и просто здравый смысл. Попробуйте сами его перевести и сделать вывод: стоит ли за ним что-либо разумное или нет.

Итальянский детектор гравитационных волн VIRGO с плечами длиной 3 км

Моя уверенность в том, что «научная» братва давно не занимается фундаментальной наукой , базируется не на пустом месте. В нескольких статьях серии «Наука не хочет знать» я описал ложный фундамент , на котором выстроена современная фундаментальная наука и показал главные заблуждения «учёных», которые не дают им возможности эффективно изучать природные процессы для того, чтобы Человечество действительно продвигалось вперёд в эволюционном развитии, а не топталось на месте, сдерживаемое вот такими «учёными». Некоторые из этих заблуждений я опишу в этой статье, и тогда сразу станет понятно, почему я считаю Сергеева и большинство остальных академиков невеждами и жуликами .

В середине февраля 2000 года американцы подогнали космический зонд NEAR достаточно близко к астероиду Эрос , уровняли скорости и стали ждать захвата зонда тяготением Эроса , т.е. когда спутник мягко притянется тяготением астероида и опустится на его поверхность. Но первое свидание почему-то не заладилось. Вторая и последующие попытки отдаться Эросу имели ровно такой же эффект: Эрос не возжелал притянуть к себе американский зонд NEAR , а без подработки двигателями, зонд вблизи Эроса не держался. Это космическое свидание так и закончилось ничем.

Т.е. никакого притяжения между зондом с массой 805 кг и астероидом массой более 6 триллионов тонн обнаружить не удалось.

Здесь нельзя не отметить ничем не объяснимое упорство иудеев из НАСА, ведь русский учёный Николай Левашов , проживая в то время в США, которые он тогда считал вполне нормальной страной, написал, перевёл на английский язык и издал в 1994 году свою знаменитую книгу «Последнее обращение к Человечеству» , в которой «на пальцах» объяснил всё, что нужно было знать специалистам из НАСА, чтобы их зонд NEAR не болтался безполезной железкой в Космосе, а принёс хоть какую-нибудь пользу обществу. Но, видимо, непомерное самомнение (понты), не основанное на знаниях, сыграло злую шутку с тамошними «учёными».

2.5. Следующую попытку повторить эротический эксперимент с астероидом, как и положено копировальщикам, взялись японцы . Они выбрали астероид под названием Итокава , и направили 9 мая 2003 года к нему зонд под названием Хаябуса («Сокол»). В сентябре 2005 года зонд приблизился к астероиду на расстояние 20 км. Учтя опыт «тупых американцев», «умные» японцы свой зонд оснастили несколькими мелкими движками и автономной системой ближней навигации с лазерными дальномерами, так что он мог сближаться с астероидом и двигаться около него автоматически, без участия наземных операторов.

Первым номером этой программы оказался комедийный трюк с высадкой небольшого исследовательского робота на поверхность астероида. Зонд снизился на расчётную высоту и аккуратненько сбросил робота, который должен был медленно и плавно упасть на поверхность. Но… не упал. Медленно и плавно его понесло куда-то вдаль от астероида . Там и пропал без вести…

Следующим номером программы оказался, опять же комедийный, трюк с кратковременной посадкой зонда на поверхность «для взятия пробы грунта». Комедийным он вышел оттого, что, для обеспечения наилучшей работы лазерных дальномеров, на поверхность астероида был сброшен отражающий шар-маркер. На этом шаре тоже движков не было и… короче, на положенном месте шара не оказалось… Так что сел ли японский «Сокол» на Итокаву, и что он на ней делал, если сел, науке неизвестно…»

Вывод: японская чуда Хаябуса не смогла обнаружить никакого притяжения между зондом массой 510 кг и астероидом массой 35 000 тонн.

2.6. Следующим экспериментом, фактически забившим последний гвоздь в крышку гроба гипотезы «всемирного тяготения» , стал ещё один эксперимент американских «учёных». В 2010 году они закончили сооружать в исследовательском центре Glenn , в городе Sandusky , в штате Ohio здоровенную вакуумную камеру диаметром 100 футов (30,5 м) и высотой 122 фута (37,2 м), общим объёмом более 22 000 куб.м. Назвали они эту бандуру «Space Power Facility» .

Зачем НАСА построило этого монстра, мировой общественности до сих пор точно неизвестно. Но обнаружилось видео одного маленького эксперимента, по которому можно смело предположить, что «спецы» из Пиндосии собирались с помощью этой алюминиевой конструкции поставить окончательную точку в спорах о гипотезе про «всемирное тяготение» . И, похоже на то, что они её таки поставили!

Собирались ли они повторить опыт Кавендиша в т.н. «идеальных условиях» (в вакууме), точно неизвестно. Но они повторили один опыт, который показывали нам всем в школе на уроках физики. Это когда из стеклянной трубки длиной около метра откачивался воздух, и демонстрировалось одновременное падение птичьего пёрышка и дробинки. Нам было невдомёк, что этот опыт на самом деле является эпохальным , да и понять его истинный смысл нам мешала полная вера в компетентность и безгрешность учителей физики , демонстрировавших нам сие «чудо» (в школе, где я учился в старших классах, физику преподавал Израиль Яковлевич Борц).

А вот в Пиндосии не поверили в честность иудейских школьных учителей, и правильно сделали! Они повторили этот опыт в новой чудо-камере НАСА и добились колоссального успеха. Вы можете сами увидеть это на предлагаемом видео (если это видео внезапно пропадёт из Youtube , вы всегда можете скачать себе копию у нас):

Как вы думаете, что на самом деле увековечено в этом ролике? Я сейчас вам быстренько всё объясню.

Начнём с последней сцены, в которой показаны довольные физиономии «ржущих» участников эксперимента, поздравляющих друг друга с «победой». Эта сцена, скорее всего, снималась заранее и должна была венчать запись «научного фурора» по подтверждению существования притяжения между материальными телами. Однако фурора не случилось – никакого притяжения не обнаружилось, и сцену всеобщего довольного ржания позже прилепили к записи самого «обычного эксперимента», который затейникам этого проекта показался достаточно безобидным.

На наше счастье, затейники из НАСА оказались действительно тупыми и невежественными (прав был покойный старина Задорнов). В этом «обычном» эксперименте мы крупным планом увидели, что в безвоздушном пространстве почти невесомое птичье перо и шар для боулинга весом около 7 кг падают на землю с высоты нескольких метров действительно одновременно ! Это говорит о том, что «сила притяжения» к Земле невесомого пера равна «силе притяжения» к этой же Земле тяжёлого шара для боулинга.

Но, по Закону Исаака Ньютона такого быть не должно! Разница в весе у них составляет около 3-х порядков (шар почти в 1000 раз тяжелее пера). А сила притяжения «по Закону» напрямую зависит от масс притягиваемых тел. Давайте запишем всё это «математически» чтобы стало нагляднее и понятнее:

Сила притяжения пера к Земле:

F 1 = Mз * Mп / R 2

Сила притяжения шара к Земле:

F 2 = Mз * Mш / R 2

Эксперимент показал, что эти силы равны, т.е.

F 1 = F 2

Подставив полные выражения этих сил, получаем следующее уравнение:

Mз * Mп / R 2 = Mз * Mш / R 2

Все одинаковые члены этого уравнения можно по законам арифметики сократить. Тогда получаем, что, масса пера равна массе шара для боулинга:

Mп =

В результате, мы пришли к противоречию , потому что масса (вес) пера явно не равна массе (весу) шара для боулинга. Следовательно, исходные данные – гипотеза о том, что сила притяжения (гравитация) зависит от массы притягиваемых друг к другу тел, – неверна !

Таким образом, в этом эксперименте мы собственными глазами увидели и убедились , что сила притяжения (гравитация) не зависит от масс «притягиваемых» друг к другу тел. А это означает, что процесса притяжения физических тел друг к другу не существует !

А, отчего же все тела падают на Землю, а не улетают в Космос ?

Науке это пока ещё неизвестно. Ни тов. Исаак Ньютон, ни современные его последователи, ни даже новый президент РАН тов. Сергеев этот вопрос не исследовали и ничего по этому поводу нам сказать не могут, да и не хотят! Учёная братва предпочитает проводить свои «исследования» вдалеке, якобы на расстоянии тысяч световых лет от Земли. А те проблемы, которые лежат прямо перед носом, их не интересуют, потому что результаты легко проверить и поймать их на лжи…

Единственный учёный, который по-настоящему исследовал вопрос о природе гравитации, это Николай Викторович Левашов . Я расскажу о его теории гравитации несколько позже.

2.7. Ещё одним подтверждением независимости «силы притяжения» (гравитации) от массы тела является т.н. Первая космическая скорость ! Её величина почему-то не зависит от массы объекта, выводимого на околоземную орбиту, а зависит только от высоты этой орбиты над поверхностью Земли! Но ведь «закон» Исаака утверждает, что сила притяжения напрямую зависит от массы тела! Якобы, чем больше масса тела, тем сильнее Земля его притягивает к себе! Выходит, Исаак нам таки точно наврал !

Ровно то же самое можно сказать и о Второй космической скорости , которая тоже не зависит от массы объекта, выводимого на орбиту; и о Третьей космической скорости; и о Четвёртой…

Ещё в физике есть такая величина, как ускорение свободного падения g «ускорение, придаваемое телу силой тяжести, при исключении из рассмотрения других сил»

Т.е. это ускорение , которое испытывают все тела, свободно падающие на Землю. Это ускорение существует, благодаря гравитации , а измеряется оно в метрах в секунду за секунду (м/с 2). Так вот, это ускорение тоже не зависит от массы тела , якобы «притягиваемого» Землёй во время свободного падения! Т.е. мифическое «притяжение» и здесь никак себя не проявляет!

И что же, никто из учёных раньше об этом не слышал? Что, никто из них этих «научных» особенностей раньше не замечал? И даже никто из наших прославленных космонавтов не обратил внимания на это явное противоречие в науке ?

Вряд ли так было. Кто-то наверняка обратил. Но, скорее всего, после серии «аварий», случившихся с Юрием Гагариным, Владимиром Комаровым, после внезапной гибели Сергея Королёва и других, не в меру любопытных людей, интерес к противоречиям в «научных» кругах значительно поубавился, а потом и совсем пропал! Наступили «тёмные времена »…

2.8. Очень интересно узнать: а как же тов. Исаак Ньютон догадался, что все физически плотные тела в мире почему-то притягиваются друг к другу? Ведь экспериментов он никаких не проводил, если не брать в расчёт яблоко, якобы упавшее с дерева на его выдуманную голову… И ещё интереснее узнать, а как же старина Исаак догадался, что сила этого притяжения (F ) прямо пропорциональна именно произведению масс притягивающихся объектов (m 1 и m 2 ), а не их сумме или разности? И кто ему подсказал, что расстояние между притягивающимися объектами (r ) нужно возводить в квадрат? Почему не в куб или в дробную степень?

На все эти и подобные вопросы правильный ответ может быть только один: Исаак Ньютон не создавал эту формулу никаким способом! И не только потому, что «Исаак Ньютон» – это выдуманный персонаж. А ещё и потому, что даже сегодня не существует хотя бы минимально надёжных методов, которые бы позволили осуществить подобное, не говоря о середине 17 века, когда Исаак якобы придумал эту формулу, и когда, по ортодоксальной версии истории, наука ещё только начинала «становиться на ноги».

Кстати сказать: если задать себе эти же вопросы и по поводу других законов физики , то возникает нехорошее подозрение о похожести методов «открытий» если не всех, то многих из этих «законов». Особенно, если учесть, что, например, основные открытия в электричестве якобы сделали люди, большинство из которых оказались иудеями и не имели не только технического, но даже вообще никакого образования

3. Реальная природа гравитации

Гравитация на нашей планете существует, она вполне реальна, и мы с вами ощущаем её воздействие прямо на себе! Вот только причина её существования – её природа – не притяжение , а совсем другая. Впервые о настоящей природе процесса гравитации рассказал в своих замечательных книгах русский учёный Николай Викторович Левашов . Он назвал свои книги «Алфавитом и грамматикой новых знаний» и дал в них начальные сведения о некоторых основных природных процессах , происходящих на нашей планете и в нашей Вселенной. В том числе, он описал и свою гипотезу процесса гравитации, которая, если говорить очень коротко, состоит в следующем…

(В упрощённом виде об этом можно прочитать в статье , а значительно более подробно – в книгах Николая Левашова и «Неоднородная Вселенная»)…

Во Вселенной не существует пустоты ни в каком виде. Всё пространство Вселенной всегда заполнено первичными материями (первоматериями), существующими в безконечном числе разновидностей. Потоки первоматерий перемещаются в пространстве и могут в той или иной степени взаимодействовать между собой. Первоматерии, которые не взаимодействуют между собой, фактически не существуют друг для друга, в них нет никаких общих свойств и качеств, поэтому они пронизывают друг друга совершенно нейтрально – незаметно друг для друга.

Раньше учёные называли совокупность первоматерий «эфиром» , а сегодня «прогресс» довёл нашу науку до такого состояния, что весь «эфир» скопом стали называть «тёмной материей» .

Пространство Вселенной является весьма неоднородным (мы сами это постоянно видим, стоит только взглянуть на небо), и, когда первоматерии попадают в разные неоднородности (искривления) пространства, их свойства могут изменяться в некоторых пределах. И случается так, что нейтральные друг к другу первоматерии начинают взаимодействовать (сливаться) между собой в пределах неоднородности.

Слившиеся между собой первоматерии Николай Левашов назвал гибридными материями . Эти материи состоят уже из двух или более слившихся первоматерий. Гибридные материи обладают уже совершенно новыми свойствами и качествами, по сравнению с первоматериями. Из гибридных материй образуются все материальные объекты в нашей Вселенной.

Большинство первоматерий никак не взаимодействуют с физически плотной материей нашей Вселенной, и поэтому мы не можем их видеть, чувствовать, ощущать и т.д. Они свободно пронизывают нас без всяких последствий. Мы их не замечаем, а они – нас.

Первоматерий настолько много, что вполне можно считать, что они движутся хаотично. Однако, в реальности направления движения первоматерий – не произвольные. Все первоматерии движутся в направлении существования тех или иных неоднородностей (искривлений) пространства, в которых существуют т.н. «перепады мерности» – резкие изменения качественных характеристик пространства.

Под термином «мерность» Николай Левашов предложил понимать некую условную совокупность параметров пространства или материальных объектов, обусловливающих существование у них тех или иных свойств и качеств. Для понимания «Азбуки» , которую дал нам Николай Левашов в своих книгах, этого объяснения вполне достаточно. А когда наша наука возродится и начнёт заниматься делом, она сможет легко всё это уточнить и дополнить…

Так вот, потоки первоматерий всегда текут туда, где существуют соответствующие «перепады мерности» , которые и являются причиной движения потоков первоматерий. С учётом того, что потоков первоматерий очень и очень много, они текут из самых разных направлений. И когда на пути таких потоков встречаются планеты , потоки первоматерий просто прижимают всё, встречающееся им на пути, к поверхности этих планет или других космических объектов. Такой природный процесс сегодня у нас и называется гравитацией .

Такая природа процесса гравитации как раз легко объясняет, почему и ускорение свободного падения g , и величины «космических скоростей» являются постоянными и совсем не зависят от массы объектов. Это происходит потому, что процесс гравитации – это процесс прижимания всех материальных тел к планете потоками первоматерий, а не притяжение этих тел к ней же по неизвестной причине. И величина этого прижимания зависит от характеристик потоков первоматерий, а не от массы тел, которые потоки прижимают к Земле.

Кстати сказать , благодаря существованию этой гипотезы, появилась возможность хоть как-то объяснить непонятности с приливами-отливами и другими неясными проявлениями воздействия Луны на Землю. Дело здесь вот в чём: Луна в определённой степени закрывает собой районы планеты от воздействия потоков первоматерий, и уровень гравитации в тех местах, где проходит гравитационная тень Луны во время её вращения вокруг Земли, уменьшается. Вполне возможно, что этот процесс является одной из основных причин существования пока ещё необъяснённых явлений на Земле, связанных с Луной.

Вот и всё, что я хотел рассказать вам о гипотезе процесса гравитации Николая Левашова . Несколько более расширенный вариант всего этого можно прочитать в моей статье «Давайте разберёмся с… гравитацией» , а значительно более подробную информацию можно найти в книгах Николая Левашова «Последнее обращение к Человечеству…» и «Неоднородная Вселенная»)…

Заключение

«Властным структурам никогда не нужно диктовать учёным, чем они должны заниматься…» Жорес Алфёров

«Для одного наука – возвышенная небесная богиня, для другого – дойная корова, обеспечивающая его маслом…» Фридрих Шиллер

«В мире существует сообщество пострашнее бандитского: это сообщество учёных…» Нильс Бор

«Это теперь наша страна, а вы, русские, убирайтесь отсюда…» Виталий Гинзбург (Лауреат Нобелевской премии, создатель Комиссии по борьбе со лженаукой и фальсификацией научных исследований, академик РАН, 2004 г.)

Из этих высказываний вполне можно сделать предположение о том, что многие учёные видели сплошную ложь в той науке, которой им позволяли заниматься в последние пару сотен лет. Но они молчали об этом. Молчали сознательно, в обмен на «почёт и уважение», которые воплощались в высоких зарплатах и премиях, в международных конференциях и покладистых ассистентках, в славе и «международном признании»…

Конечно, не все учёные являются подонками – сознательными лжецами и преступниками. Есть и настоящие невежды, с перепугу сразу крепко закрывшие глаза и твёрдо решившие «косить под дурачков», как только начали о чём-то догадываться. Но это не уменьшает их вины ни перед собой и своими потомками, ни перед человеческим Обществом.

Похоже на то, что главный персонаж этой статьи – президент РАН Александр Сергеев – вначале тоже не был идейным или принципиальным врагом настоящей науки. Придя работать в науку, он наверняка был обычным верующим , фанатично веровавшим в авторитеты «корифеев», хотя Библия и предупреждала «не сотворяй себе кумиров» .

По мере продвижения по научно-служебной лестнице, ему приходилось постоянно доказывать свою лояльность и преданность сионистской верхушке «научной» мафии . Без этого он не стал бы ни кандидатом наук, ни доктором, ни академиком! И то, что его назначили главой РАН, свидетельствует о том, что сейчас он уже доведён до нужной кондиции и готов активно бороться за «святое» дело уничтожения остатков русской фундаментальной науки , что и подтверждается анализируемой статьёй корреспондента ТАСС.

При этих условиях остаётся надеяться только на «чудо» , которое обязательно должен совершить Президент В. Путин чтобы суметь «привести в чувства» здоровенный «научный» кагал, утихомирить его и заставить работать на благо Родины или хотя бы не мешать это делать другим! А без этого ни Россия, ни русы выжить не смогут, да и «цивилизация» наша долго не протянет…

Дмитрий Байда, 24.11.2017

Семейный подряд: академики протаскивают в РАН своих детей

Кумовство в РАН мешает восстановлению интеллектуальной элиты

Неоднородность пространства

Более подробную и разнообразную информацию о событиях, происходящих в России, на Украине и в других странах нашей прекрасной планеты, можно получить на Интернет-Конференциях , постоянно проводящихся на сайте «Ключи познания» . Все Конференции – открытые и совершенно безплатные . Приглашаем всех просыпающихся и интересующихся…

Сергеев станет 22-м президентом Академии наук за всю ее историю, 10-м избранным и третьим в новейшей истории

26 сентября 2017 года на общем собрании Российской академии наук (РАН) президентом академии избран физик, директор Института прикладной физики РАН 62-летний Александр Сергеев. Он вступит в должность после утверждения президентом России. Александр Сергеев станет 22-м президентом Академии наук за всю ее историю, 10-м избранным и третьим в новейшей истории (с 1991 года).

Александр Михайлович Сергеев родился 2 августа 1955 года в селе Бутурлино Горьковской области (ныне - поселок городского типа, Нижегородская обл.).

В 1977 году окончил радиофизический факультет Горьковского государственного университета им. Н. И. Лобачевского (ныне - Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского, ННГУ) по специальности "радиофизика".

В 1982 году в Институте прикладной физики АН СССР (ныне - ИПФ Российской академии наук) защитил диссертацию кандидата физико-математических наук по теме "Самовоздействие и трансформация интенсивных электромагнитных волн в магнитоактивной плазме". В 2000 году там же - диссертацию доктора физико-математических наук (тема: "Нелинейные волновые процессы при генерации сверхкоротких оптических импульсов и взаимодействии сильных оптических полей с веществом"). В 2003 году был избран членом- корреспондентом, в 2016 году - академиком РАН. Член Отделения физических наук (физика и астрономия) Академии наук, член Совета РАН по космосу.

После окончания университета был принят стажером- исследователем в ИПФ АН СССР (Горький, ныне - Нижний Новгород). Затем работал младшим (1979-1985), старшим (1985-1991) научным сотрудником, заведующим лабораторией (1991-1994), заведующим отделом (1994-2001). С 2001 по 2015 год занимал должность заместителя директора ИПФ РАН, в 2001-2012 годах также возглавлял отделение института.

С 2015 года по н. в. - директор Института прикладной физики РАН. Одновременно является заведующим отделом сверхбыстрых процессов и заведующим сектором моделирования сверхбыстрых оптических процессов Отделения нелинейной динамики и оптики ИПФ. По совместительству - профессор кафедры общей физики радиофизического факультета ННГУ.

Возглавляет группу российских ученых в проекте по детектированию гравитационных волн LIGO в США. В 2016 году участникам проекта была присуждена престижная премия Грубера по космологии, а также Премия по фундаментальной физике (учреждена российским бизнесменом Юрием Мильнером).

Член научно-координационного совета Федерального агентства научных организаций и совета Российского фонда фундаментального исследований. Член редколлегии журналов "Успехи физических наук" и "Известия ВУЗов - Радиофизика".

В июле 2017 года зарегистрирован кандидатом на пост президента РАН. Был выдвинут бюро Отделения физических наук, бюро Отделения энергетики, машиностроения, механики и процессов управления, бюро Отделения биологических наук, президиумом Уральского отделения, а также 240 членами РАН, согласно официальному сайту академии. 31 августа его кандидатура была согласована правительством РФ.

Александр Сергеев - ученый в области лазерной физики, фемтосекундной оптики (оптика сверхкоротких лазерных импульсов), теории нелинейных волновых явлений, физики плазмы и биофотоники (исследует взаимодействие света с биологической тканью). Под его руководством в ИПФ РАН был создан самый мощный в России петаваттный (10 в пятнадцатой степени ватт, или миллиард мегаватт) лазерный комплекс, разработаны новые способы применения фемтосекундного излучения для обработки материалов и медицины.

Автор и соавтор более 350 научных работ. Среди них - "К аналитической теории лазерных осветителей" (1980), "От фемтосекундных к аттосекундным импульсам" (1999), "Тераваттный фемтосекундный титан-сапфировый лазерный комплекс" (2001), "100-тераваттный фемтосекундный лазер на основе параметрического усиления" (2005), "Горизонты петаваттных лазерных комплексов" (2011), "ВКР-лазер с пикосекундной длительностью импульса, работающий в безопасном для глаз диапазоне" (2016) и др.

Лауреат Государственной премии РФ в области науки и техники (1999), премии правительства РФ в области науки и техники (2012). Награжден орденом Почета (2006).

Женат, имеет двоих детей. Супруга, Марина Дмитриевна Чернобровцева, - научный сотрудник ИПФ РАН. Дочь Екатерина - кандидат физико-математических наук, старший научный сотрудник ИПФ РАН. Сын Михаил - сотрудник ННГУ.

Последние материалы сайта